

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

SECTION A :(GENERAL)

1. Amylose and cellulose are two straight chain polysaccharides of glucose. The difference is
(A) Amylose is water soluble, cellulose is not
(B) Amylose reduces Tollen's reagent, cellulose does not
(C) Amylose reduces Fehling's solution, cellulose does not
(D) Amylose has $\beta \rightarrow$ (14) linkages between its moformers wisk ceflulose has $\alpha \rightarrow$ (14) linkages.
2. During photos ynthes is oxygen is generated from
(A) Carbon dioxide only
(B) Water only
(C) Both carbon dioxide and wat:
(D) Phosphoglycerate
3. Which of the following is necharacteristic of genomic libraries?
(A) They include i*) iens as well as exons
(B) They confain randorifragments of genomic DNA
(C) They indudicDNA copies ofmRNA
(D)The\% EOUntain porm oter s equences
4. 4 An onzyme eatalyzing the reaction Glycerate-3-phosphate \longleftrightarrow Glycerate-2- PO_{4} woutachave an EC number with first digit
(A) 2
(B) 4

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(C) 5
(D) None of the above
5. Stomata close during water deficit in response to
(A) Abscisic acid
(B) Phytochrome
(C) Ethylene
(D) Cytokinin
6. Harmonic mean is defined as the reciprocal of \qquad
(A) Arithmetic mean
(B) Geometric meal
(C) Arithmetic mean of the reciprocal of obs nations
(D) Geometric mean of the regiproce of the given individual observations.
7. $\frac{1}{\mathrm{D}^{2}-1} \sin \mathrm{x}=$
(A) $\sin x$
(B) $\frac{1}{2} \sin x$
(C) 2 sin x
(D) $\frac{1}{2} \sin x$
8. Thement on the x-axis, which is equidistant from the points $A(2,1)$ and $B(1,3)$ is
(A) $\left(\frac{-5}{2}, 0\right)$
(B) $(4,0)$

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(C) $\left(\frac{-3}{2}, 0\right)$
(D) $(-1,0)$
9. If $z=(2-3 i)$ and $z^{2}-4 z+13=0$, what is the value of $4 z^{3}-3 z^{2}+169$,
(A) 169
(B) 0
(C) $4 z+169$
(D) $3 i-13$

(A) Class frequency divided by the total fre"uency
(B) Cumulative frequency multiplied by numberof rêtangles
(C) Total area bounded bythe corksponding fiequency polygon in the Y -axis
(D) Total area bounded by the correspinding frequency polygon in the X -axis .
11. If the earth shrinks to half its radies without change in mass, the duration of the day will be
(A) 48 hrs
(B) 24b3ss
(C/ 12)
(D) hrs
12. A whees having moment of inertia $2 \mathrm{~kg}-\mathrm{m}^{2}$ about its vertical axis, rotates at the rate of 60 rpm about this axis. The torque which can stop the wheel's rotation in one minute would be:

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(A) $\frac{2 \pi}{15} \mathrm{~N}-\mathrm{m}$
(B) $\frac{\pi}{12} \mathrm{~N}-\mathrm{m}$
(C) $\frac{\pi}{15} \mathrm{~N}-\mathrm{m}$
(D) $\frac{\pi}{18} \mathrm{~N}-\mathrm{m}$
13. Two particles A and B are connected by a rigid rod $A B$. The fod slides along
 the velocity of B when angle $\alpha=60^{\circ}$?

(A) $9.8 \mathrm{~m} / \mathrm{s}$
(B) $10 \mathrm{~m} / \mathrm{s}$
(C) $5.8 \mathrm{~m} / \mathrm{s}$
(D) $17.3 \mathrm{~m} / \mathrm{s}$
14. The quly stage of river system represented by
(A) Oxbow lake
(B) Alluvial fans

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(C) Gorges
(D) Alluvial cones
15. When the eastern edge of the plate passed over the Kerguelen hot spot, a chain of islands began to form near long $90^{\circ} \mathrm{E}$. The Indian plate continued to move northward at an accelerated rate of
(A) $15-20 \mathrm{~cm} / \mathrm{yr}$.
(B) 5-10 cm/yr.
(C) 25-30 $\mathrm{mm} / \mathrm{yr}$.
(D) $0-5 \mathrm{~cm} / \mathrm{yr}$.

SECTION B: (PHYSICS)

1. A nucleus with mass number 220 initialy at ryentan α-particle. If the Q - value of the reaction is 5.5 MeV , calculfte the kineticenergy of the α - particle?
(A) 4.4 MeV
(B) 3.4 MeV
(C) 5.4 MeV
(D) 5.2 MeV -
2. The noman Zeen arkiting of the cadmium red line of $6438 A^{\circ}$ when the atoms are placesin a magneffield of 0.009 tesla is
(A)

(B) $2.43 \times 10^{-3} \AA$
(C) $4.62 \times 10^{-4} \AA$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(D) $2.59 \times 10^{-2} \AA$
3. Two fixed charges-2Q and Q are located at the points with coordinates $(-3 a, 0)$ and $(3 a, 0)$ in the $x-y$ plane. The loas of all points in the $x-y$ plane where the electric potential due to the charges is zero is a /an
(A) Straight line
(B) Ellipse
(C) Circle
(D) Parabola
4. Two bodies M and N of equal masses are suspended emem separate massless springs of spring constants K_{1} and K_{2} *espectively. If the two bodies osallate vertically such that their maximum velocities are cq/at, the ratio of their amplitude of vibration of M to that of N is
(A) K_{1} / K_{2}
(B) $\sqrt{K_{1} / K_{2}}$
(C) K_{2} / K_{1}
(D) $\sqrt{K_{2} / K_{1}}$
5. If the simp pendulum shown in figure is released from point A, the speed of the bor as it \%asses through equilibrium point is

(A) $\sqrt{7.35} \mathrm{~ms}^{-1}$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(B) $\sqrt{14 \cdot 7} \mathrm{~m} \mathrm{~s}^{-1}$
(C) $\sqrt{10 \cdot 03} \mathrm{~ms}^{-1}$
(D) $\sqrt{21.05} \mathrm{~ms}^{-1}$
6. A small block is shot into each of the four tracks as shown below. Eafch of the tracks rises to the same height. The speed with which the block enters themackis the same in all cases. At the highest point of the track, the normat reaction ismaximum in

(A)

(B)

(C)
7. The engine of a car produces acceleration $4 \mathrm{~m} / \mathrm{s}^{2}$ in the car. If this car pulls another car of samemass, what will be the acceleration produced?

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(A) $8 \mathrm{~m} / \mathrm{s}^{2}$
(B) $2 \mathrm{~m} / \mathrm{s}^{2}$
(C) $4 \mathrm{~m} / \mathrm{s}^{2}$
(D) $\frac{1}{2} \mathrm{~m} / \mathrm{s}^{2}$
8. A car when passes through a convex bridge exerts a force orfawhigh is equaf to
(A) $\mathrm{Mg}-\frac{\mathrm{Mv}{ }^{2}}{\mathrm{r}}$
(B) 2.5 kg
(C) Mg
(D) 4 kg
9. The temperature of an ideal gas in increased from 120 K to 480 K . If at 120 K the root mean square velocity oftheg gas nolecules is at 480 K it becomes
(A) $4 v$
(B) $2 v$
(C) $v / 2$
(D) $v / 4$
10. T.* platesistance of a triode is $3 \times 10^{3} \Omega$ and its mutual conductance is 1.5×10^{-3} A V The aldification factor of the triode is
(A) 5×10^{-5}
(B) 4.5
(C) 45

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．
（D） 2×10^{5}
11．Two thin long parallel wires separated by a distance b are carrying a current i ampere each．The magnitude of the force per unit length exerted by one wire on the other is
（A）$\frac{\mu_{0} i^{2}}{b^{2}}$
（B）$\frac{\mu_{0} i^{2}}{2 \pi \mathrm{~b}}$
（C）$\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{~b}}$
（D）$\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{~b}^{2}}$
12．A current I flows along the eng th of akinfinielly long．straight，thin－walled pipe．Then
（A）The magnetic field at 牲 points ins ide the pipe is the same，but not zero
（B）The magnetic 后d at any porimside the pipe is zero
（C）The magnetic fiewd 1 缺zero only on the axis of the pipe
（D）Themagnetic feel：is different at different points inside the pipe
13．A prisronss a relacting angle of 60° ．When a ray is incident at 50° ，it suffers minimum daviation $\left(\delta_{m}\right)$ ．The value of is
（A） 年5 2
（B） 60°
（C） 55°
（D） 40°

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
14. When an electron jumps from the fourth orbit to the second orbit, one gets the
(A) Second line of Paschen series
(B) Second line of Balmerseries
(C) First line of Pfund series
(D) Second line of Lym an series
15. A sinusoidal voltage $\mathrm{V}(\mathrm{t})=200 \mathrm{sin} 1000 \mathrm{t}$ is applied across a purempuctive coil of inductance $L=0.2 \mathrm{H}$. The current and instant power will
(A) $20 \cos 100 \mathrm{t}, 200 \sin 2000 \mathrm{t}$
(B) $200 \cos 1000 \mathrm{t}, 2000 \sin 2000 \mathrm{t}$
(C) $\cos 1000 \mathrm{t}, 100 \sin 2000 \mathrm{t}$
(D) $10 \cos 1000 \mathrm{t}, 1000 \sin 2000 \mathrm{t}$

SECTION C :(CHEMISTRY)

1. Chlorobenzene on hydrolys with $\mathrm{SiO}_{\text {, gives }}$
(A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
(B) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
(C) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}$

2. Cellulose is lifigestible by humans because we lack the enzyme that hydrolyzes
(A) $\alpha=4$ glycosidic bonds
(B) $\alpha-1,6$ glycosidic bonds
(C) $\beta-1,4$ glycosidic bonds
(D) long-chain polys accharides
3. For the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}(\mathrm{g})$ equilibrium constant, K_{p} changes with:

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(A) Total pressure
(B) Catalyst
(C) Amount of H_{2} and I_{2} present
(D) Tem perature
4. In which case, a spontaneous reaction is impossible at any tempetatừ?
(A) $\Delta \mathrm{H}+\mathrm{ve}, \Delta \mathrm{S}+\mathrm{ve}$
(B) $\Delta \mathrm{H}+\mathrm{ve}, \Delta \mathrm{S}-\mathrm{ve}$
(C) $\Delta \mathrm{H}-\mathrm{ve}, \Delta \mathrm{S}-\mathrm{ve}$
(D) In all cases
5. Which of the following does not react with nikrouts acid?
(A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(B) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCH}_{3}$
(C) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(D) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$
6. Suppose that a probver öfglucose with alternating $\alpha(1 \rightarrow 4)$ and $\beta(1 \rightarrow 4)$ glycosidic linkages nas ju'st been discovered.
(*) This olymer would have primarily a structural role in organisms
(Q) This potymer would have primanilyan energy storage role in organisms
(R) Rilminants could use this polys accharide as a food source.

Which of the following statement is / are correct?
(A) Q, R

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(B) Only R
(C) P, R
(D) Only Q
7. The elements which occupy the peaks of ionization energy curve are
(A) $\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$
(B) $\mathrm{Na}, \mathrm{Mg}, \mathrm{Cl}, \mathrm{I}$
(C) CI, Br, I, F
(D) $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}$

(A) $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CF}_{2} \cdot \mathrm{COOH}$
(B) $\mathrm{CH}_{3} \cdot \mathrm{CF}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{COOH}$
(C) $\mathrm{CHF}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{COOH}$
(D) $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CHF} \cdot \mathrm{COOH}$
9. A complex $\left[\mathrm{CoL}_{6}\right]$ where L is a neutral ligand has a magnetic moment $\mathrm{m}=4.5$ BM. Hence
(A) Camussbe int 2 oxidation state
(B) musi be a strong ligand
(C) The complex must be highly distorted
(D) Co mustbe +3 oxidation state
10. Toluene gives following reaction:

$$
\text { Toluene } \xrightarrow[\text { ii) } \mathrm{CH}_{3} \mathrm{O}^{-}]{\text {i) } \mathrm{NBS} / \Delta} \mathrm{A}
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
Which one of the followingstatements is correct?
(A) A is benzyl alcohol, ionic mechanism and $S_{N} 1$ reaction
(B) A is methyl benzoate, electrophilic aromatic and $\mathrm{S}_{\mathrm{N}} 2$ reaction elimination reaction
(C) A is benzyl methyl ether, free radical mechanism and $\mathrm{S}_{\mathrm{N}}{ }^{2}$ reation
(D) None of the above
11. In the boraxbead test of CO^{2+} the blue colour of bead is due to the ferfation of
(A) $\mathrm{B}_{2} \mathrm{O}_{3}$
(B) $\mathrm{CO}_{3} \mathrm{~B}_{2}$
(C) $\mathrm{Co}\left(\mathrm{BO}_{2}\right)_{2}$
(D) CoO
12. Which of the following statemeentis viong?
(A) Increasing the level of tiP favors both gluconeogenes is and glycogen synthes is
(B) Decreasing the level of actase -1,6 -bisphosphate would stimulate glycogen synthes is
(C) Level of funchions phosphate do not have a marked regulatory effect on gluceneosenesis and glycogen synthes is .
(D) All arestrue
13. 性 the syster, $\mathrm{CaF}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{~F}$, increas ing the concentration of Ca^{2+} ions 4 times.ill cause the equilibrium concentration of F^{-}ions to change to -
(A) $1 / 4$ of the initial value
(B) $1 / 2$ of the initial value

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(C) 2 times of the initial value
(D) None of the above
14.
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+6 \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=-3264.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
According to the above reaction, the energy obtained by burning 3.9 oftrentene in air will be
(A) 163.23 kJ
(B) 326.4 kJ
(C) 32.64 kJ
(D) 3.264 kJ
15. 2.5 L of a sample of gas at $27^{\circ} \mathrm{C}$ and baressure is compressed to a volume of 500 mL keeping the temperature constant, the percentage increase in pressure is:
(A) 100%
(B) 400%
(C) 500%
(D) 80%

SECTMON D (BIOLOGY)

1. Ho does hucleotide-excision repair differ from base-excision repair?
(A) Batse-excision repair recognizes and removes single damaged bases, whereas nucleotíde-excision repair is more general, recognizing many different kinds of lesions that distort the DNA molecule

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(B) Nucleotide-excision repair reverses the chemical reaction that caused the lesion, whereas base excision repair removes the damaged bases and replaces them with normal ones
(C) Only the base is removed in base-excision repair, whereas the entire nucleotide is removed in nucleotide-excision repair
(D) Base-excision repair requires no protein components, and cant occur by simple absorption of UV light, whereas nucleotide-excision repair req\&es several enzymes
2. A strain of E.coli has a temperature-sensitive mutation which inactistes the $3^{\prime} \rightarrow 5^{\prime}$ exonuclease activity of DNA polymerase III (Po\&*ill). Nfinen Irown at the nonpermissive temperature for this mutation, these ells aremikelyto show
(A) Failure to initiate DNA replication
(B) Arrest during replication
(C) Elevated mutation rate
(D) Unregulated replication
3. Survivorship curve of the \&ecies in which the population mortality rate is low until near the end of the span?

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(C)

(D) None
4. C-value paradox suggest us about
(A) Co- linearity between genome size and complexity of orgársm
(B) Non-co linearity between genome size and complexty of organism
(C) Dos age compensation
(D) Number of chromosome
5. Consider the following statements regarding 险kay of genes:

1. Two genes are said to be linked when they fail to show independent assortment.
2. The strength of the linkage demined the distance between the two genes.
3. The strength of the linkge is directly) genes.

Of these statement?
(A) 1, 2 and same conect
(B) 1 and 2\%re carrect
(C) 2 and:3 are correct
(D) 1 and 3 àre correct
6. Two pink-flowered four-o'clocks are crossed to each other. Flower colour is incompletely dominant and giving phenotypic ratio if 1 red: 2 pink: 1 white. What are the following probabilities?
P. The first three plants with white flower
Q. A plant with either white or pink flower
(A) P. 1/64 Q. $3 / 4$
(B) P. 3/16 Q. 1/64
(C) P.3/64 Q. 9/16
(D) P. 1/64 Q. $3 / 4$
7. What is meant by the steady-state assumption that underiesthe Mechaelifenten relationship between substrate concentration and reactiof Velocity*
(A) The reaction velocity is linearly related to substrate conseritraion
(B) The reaction velocity is independent to substeate eameentrefion
(C) The rate of breakdown of the enzyri*e substrate complex equals the rate of form ation of the complex
(D) The rate of formation of produst equals the rate of disappearance of substrate
8. Suppose you are given a/strain of nosphila exhibiting an unknown abnomal genetic trait (mutation). We mate the m.itant females to males from a balanced that strain $\left(\mathrm{Cy} \mathrm{P}_{\mathrm{m}}{ }^{+} / \mathrm{Ca}_{4}^{+} \mathrm{P}_{\mathrm{m}}\right.$, $\mathrm{DSB}+\mathrm{F}$ Sb) where curlywings (Cy) and plum eye $\left(\mathrm{P}_{\mathrm{m}}\right)$ are on chromosorte 2 and dichaete wing (4) and stubble bristles (Sb) are on chromosome, s.Homozygesity for either curly, plum, dichaete or stubble is lethal. The teal eas mot appear in the F1. The F1 males with early wings and stubby bristles are then backcrossed to the original mutant females. In the progeny the mutation aper in equal association with curly and stable. The mutation is
(4) (3) in inant
(B) Recessive
(C) Can'ts ay anything (data ins ufficient)
(D) None

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
9. When dominant epistas is is operative between two gene loci, the classical $9: 3: 3$: 1 ratio becomes modified into:
(A) $9: 3: 4$ ratio
(B) $9: 6: 4$ ratio
(C) $12: 3: 1$ ratio
(D) $15: 1$ ratio
10. Which of the statement is false about the fluctuation of intraocefar presure? The introcular pressure fluctuate.
(A) Seas onally being higher in the winter
(B) Diurnally with the circadian rhythm being higher in the yorning
(C) With fluid intake, the intraocular pressure ingeases with increased bold fluid
(D) Do not fluctuate with eye movements
11. The cut surface of an applef tums broty when in contact with air. IF the cut apple is dipped is ascorbic acid, orrowning dioes not takes place. This is because ascorbic acid
(A) Prevents release of polyphenol from damaged cells
(B) Prevents vivengos cutsurface
(C) didits ictivityof polyphenol oxidase (PPO)
(D) Overcemes cells injurycaused by cutting
12. aibromothymoquinone, an inhibitor of cytochrome bf complex of photosynthetic electront transport chain was added to the green alga Chlamydomonas. After illumination it was found that in the alga
(A) Plastoquinone was in reduced state
(B) p700 was in reduced state
(C) Plastocyanin was in reducedstate
(D) Plastoquinone was in oxidized state
13. Histone acetylation increases trans cription of gene because
(A) It increase the DNA-histone interaction
(B) The acetyl groups on histones are recognized by the RNA कlymase
(C) Histone acetylation loosens the DNA-his tone comflex, there making it more accessible to RNApolymerase
(D)Histone acetylation induces DNA bendins mhiedm isecognized by RNA polymerase
14. Choose the wrong statement

Yersinia pestis, the organism which causes plawe, is able to survive in its host
(A) By inhibiting phagocytosis bymactophages through a protein Era-1
(B) By inhibiting activation d complement cas cade through a protein Yad A
(C) By inhibiting suaky trans dùction in phagocytic cells through a protein YopH
(D) By release of cyeto which destroys actin molecules through a protein plasma.
15. All youmells contat proto-oncogenes, which can change into cancer-causing geres. Whydo celossess such potential time bombs?
(A) Rotooregenes protect cells from infection by cancer-caus ing virus es
(B) Reotooncogenes are genetic junk that has not yet been eliminated by natural selection
(C) Protooncogenes are unavoidable environmental carcinogens
(D) Protooncogenes are necessary for normal control of cell division

1.(A) Amyose is. watersolutble whereas cellulose is insoluble in water.

AS. both are the polys accharides of glucose so produces the reducing sugar test \& in amylose\% $\alpha \rightarrow(14)$ linkage is presents whereas in cellulose $\beta \rightarrow$ (14) linkage is present.
2.(B) Ruben and Kamen proved that oxygen released by green plants comes from spliting of water (oxidation of water) by experimenting on Chlorella (a green alga).

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
He used water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ having heavy is otope of oxygen $\left(\mathrm{O}^{18}\right)$ and found that oxygen released in the process of photosynthes is was of O^{18} type.

3.(C) A genomic library is a collection of plasmid clones phage fis ate containing recombinant DNA molecules so that the sum total of NAmerts ilis this collection, ideally represents the entire genome of conœred organism. S/milarly when these clones are cDNA they are collectively called a c®evenitray.
4.(A) The given enzymatic reaction :

$$
\text { Glycerate-3-phosphate } \overleftrightarrow{\mathbb{Z}} \text { Glycer,ite-2- } \mathrm{PO}_{4}
$$

can be catalyzed by an phospho alucometases which belong to Transferases group of enzyme having \& 害 number 2
5.(A) Abscisic acid (AbA) is a trater stress plant homone, so stomata closes during water deficit in response to AbA
6.(C) Hamonicmen is the rathmetic mean of the reciprocal of observations.
7.(D)

8.(A) Le the potabe $P\left(x_{1} y_{1}\right)$

Sintex lies on x axis $\quad \Rightarrow y_{1}=0$
So $\quad P A=P B$
$\sqrt{\left(2-x_{1}\right)^{2}+1^{2}}=\sqrt{\left(1-x_{1}\right)^{2}+3^{2}}$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
On squaring

$$
\begin{array}{ll}
& 4+x^{2}-4 x+1=1+x^{2}-2 x+9 \\
\Rightarrow & 2 x+5=0 \\
\Rightarrow & x=-\frac{5}{2}
\end{array}
$$

Then P becomes $\left(-\frac{5}{2}, 0\right)$
9.(B) $Z=Z-3 i$ is one of the root of $Z^{2}-4 Z+13$
if $Z=2-3 i$
$4 z^{3}-2 z^{2}+169=4(-46-9 i)+3(5+12 j)+169=0$
10.(A) Area of the rectangles in a histogram is propofionsty class frequency

So Area $=\frac{\text { class frequency }}{\text { Total frequency }}$
11.(D) Using conservation of âAular momențim (As $\left.\tau_{\text {ext }}=0\right) \Rightarrow \vec{\tau}_{\text {ext }}=0$
$\Rightarrow \frac{\mathrm{d} \overrightarrow{\mathrm{L}}}{\mathrm{dt}}=0 \Rightarrow \overrightarrow{\mathrm{~L}}=\mathrm{c}$ gintant

$A \mathrm{I}=\frac{4}{5} \stackrel{4}{2} \Rightarrow R^{2} \propto T$
Sal $\frac{R^{2}}{(/ 2)^{2}}=\frac{24 \mathrm{hr}}{\mathrm{T}} \Rightarrow \mathrm{T}=6 \mathrm{hr}$
12.(C) Given : $I=2 \mathrm{~kg}-\mathrm{m}^{2}, \omega_{0}=\frac{60}{60} \times 2 \pi \mathrm{rad} / \mathrm{s}$,
$\omega=0, t=60 \mathrm{~s}$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
The torque required to stop the wheel's rotation is

$$
\begin{array}{ll}
& \tau=\mathrm{I} \alpha=\mathrm{I}\left(\frac{\omega_{0}-\omega}{\mathrm{t}}\right) \\
\therefore & \tau=\frac{2 \times 2 \pi \times 60}{60 \times 60}=\frac{\pi}{15} \mathrm{~N}-\mathrm{m}
\end{array}
$$

13.(D) Let the velocity along x and y axes by v_{x} and v_{y} respectively.

$$
\therefore \quad \mathrm{v}_{\mathrm{x}}=\frac{\mathrm{dx}}{\mathrm{dt}} \text { and } \mathrm{v}_{\mathrm{y}}=\frac{\mathrm{dy}}{\mathrm{dy}}
$$

From figure.

$$
\begin{aligned}
& \tan \alpha & =\frac{y}{x} \\
\Rightarrow \quad & y & =x \tan \alpha
\end{aligned}
$$

Differentiating Eq. (i) w.r.t. t, weeget

$$
\begin{aligned}
& \frac{d y}{d t}=\frac{d x}{d t} \tan \alpha \\
\Rightarrow \quad & V y=v_{x} \tan \alpha_{1}
\end{aligned}
$$

Here, v_{x}

$$
=0,1 / \mathrm{s}, \alpha=60^{\circ}
$$

$\therefore \quad 18 y=10 \tan 60 \cdot 10 \sqrt{3}=17.3 \mathrm{~m} / \mathrm{s}$
14.(C) Fhe eatystage of river system represented by Gorges.
15.6) When the eastern edge of the plate passed over the Kerguelen hot spot, a chain of istand began to form near long $90^{\circ} \mathrm{E}$. The Indan plate continued to move northward at an accelerated rate of 5-10 cm/yr.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

SECTION B : (PHYSICS)

1.(C) N^{220}

Q value of the reaction $=5.5 \mathrm{MeV}$
$\therefore \quad(\mathrm{KE})_{\mathrm{He}}+(\mathrm{KE})_{\mathrm{N}}=5.5 \mathrm{MeV}$

$$
(\mathrm{KE})_{\mathrm{He}}=\frac{\mathrm{P}^{2}}{2 m_{\mathrm{He}}},(\mathrm{KE})_{\mathrm{N}}=\frac{\mathrm{P}^{2}}{2 m_{\mathrm{N}}}
$$

then $\frac{(K E)_{\mathrm{He}}}{(\mathrm{KE})_{\mathrm{N}}}=\frac{m_{\mathrm{N}}}{m_{\mathrm{He}}}$

$$
(\mathrm{KE})_{\mathrm{N}}=\frac{\mathrm{m}_{\mathrm{He}}}{\mathrm{~m}_{\mathrm{N}}}(\mathrm{KE})_{\mathrm{He}}
$$

Here $\quad m_{H e}=4$

$$
\mathrm{m}_{\mathrm{N}}=220
$$

$\therefore \quad(\mathrm{KE})_{\mathrm{N}}=\frac{4}{4200}(\mathrm{KE}) \mathrm{He}$) \quad (2)
From (1) and (2)

(K) $\mathrm{He}\left[\frac{4}{220}\right]=5.5 \mathrm{MeV}$
(KE) $\mathrm{He}\left[\frac{224}{220}\right]=5.5 \mathrm{MeV}$
$(\mathrm{KE})_{\mathrm{He}}=\frac{5.5 \times 220}{224} \mathrm{MeV}=5.4 \mathrm{MeV}$

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
2.(A) $\quad \therefore \quad B=\frac{4 \pi m c}{e} \frac{\Delta \lambda}{\lambda^{2}}$

$$
\begin{array}{r}
\Delta \lambda=\frac{\mathrm{Be} \lambda^{2}}{4 \pi \mathrm{mc}}=\frac{0 \cdot 09 \times 1 \cdot 6 \times 10^{-19} \times 6438 \times 10^{-10} \times 6438 \times 10^{-10}}{4 \times 3 \cdot 14 \times 9 \cdot 1 \times 10^{-31} \times 3 \times 10^{8}} \\
=1740.65 \times 10^{-16} \mathrm{~m}=1.74 \times 10^{-13} \mathrm{~m}
\end{array}
$$

$$
\Delta \lambda=1.74 \times 10^{-3} \mathrm{~A}^{0}
$$

3.(C) $\mathrm{V}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} r}$

Therefore, equipotential potentials are such thatisman frow - 2Q charge is twice distance from + Q charge
$\sqrt{(x-(-3 a))^{2}+(y-0)^{2}}=2 \sqrt{(x-3 a)^{2}+(y-0)^{2}}$
$\Rightarrow(x+3 a)^{2}+y^{2}=4(x-3 a)^{2}+4 y^{2}$
$\Rightarrow 3 x^{2}+3 y^{2}-30 a x+27 z^{2}=0$ Hence the locus is a circle
4.(D) $\quad X=A \sin$

5.(B) $\frac{-1}{2} \mathrm{pv}^{2}=\stackrel{\operatorname{tag} \mid}{ } \Rightarrow \mathrm{v}=\sqrt{\mathrm{g} \times 0.75 \times 2}=\sqrt{1.5 \mathrm{~g}}=\sqrt{14.7}$
6.(A) *ince the block rises to the same heights in all the four cases, from conservation of energy, speed of the block at highest point will be same in all four cases. Say it is V_{0}.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Equation of motion will be $N+m g=\frac{m v_{0}^{2}}{R}$
or

$$
N=\frac{m v_{0}^{2}}{R}-m g
$$

R (the radius of curvature) in first case is mining. Therefore normal reaction N will be maximum in first case.

Note In the question it should be mention 精都all the four tracks are frictionless. Otherwise, v_{0} will be different in different tracks.
$a=\frac{F}{m}$ according to newfon'slaw,
7.(B)

$$
a^{\prime}=\frac{F}{2 m}=a / 2=4 / 2=2 m s^{-2}
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

9.(B)

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}
$$

i.e.

$$
v_{\mathrm{rms}} \propto \sqrt{\mathrm{~T}}
$$

When temperature is increased from 120 K 480 K (i.e, four times), the root mean square speed will become $\sqrt{4}$ or 2 times ie, 2
10.(B) Given $r_{p}=3 \times 10^{3} \Omega$

$$
g_{\mathrm{m}}=1.5 \times 10^{-3} A^{2}
$$

$\therefore \quad$ Amplificatờn ratetor, $\mu=g_{m} \times r_{p}=4.5$
\therefore A celrect eption is (b)
11.(B) Ferce perfunit length between two wires carrying currents i_{1} and i_{2} at dstance r is given by :

$$
\frac{\mathrm{F}}{l}=\frac{\mu_{0}}{2 \pi} \frac{\mathrm{i}_{1} \mathrm{i}_{2}}{\mathrm{r}}
$$

Here, $\quad i_{1}=i_{2}=i$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

and $r=b$

$\therefore \quad \frac{\mathrm{F}}{l}=\frac{\mu_{0} \mathrm{i}^{2}}{2 \pi \mathrm{~b}}$
\therefore correct option is (B)
12.(B) Using Ampere's circuital law over a circuly bop of anyadius less than the radius of the pipe, we can see that net current insid theop is zero. Hence, magnetic field at every point inside the loof will be zero.
13.(D) in minimum deviation positiof ${ }^{(2)}$,

$$
i_{1}=i_{2}=50^{\circ} ; A=6
$$

From

$$
\begin{aligned}
& \text { 会 } \delta_{m}=i_{1}+i_{2} \\
& \delta m=\mathrm{j}_{1}+\mathrm{i}_{2} \mathrm{~A}=50+50-60=40^{\circ}
\end{aligned}
$$

14.(B) Jumptevtik seqnd okbit leads to Balmer series. The jump from 4th orbit shall give rise to se\%ond lin of Balmer series
15.(C) $\because(t)=20$ sin $1000 t$

$$
\mathrm{L}=0.2 \mathrm{H}
$$

The current will be

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{aligned}
& I=I_{0} \sin \left(\omega t-\frac{\pi}{2}\right) \\
& =\frac{v_{0}}{\omega L} \sin (\omega t-\pi / 2) \\
& =\frac{200}{1000 \times 0.2} \cos 1000 t \\
& =\cos 1000 t
\end{aligned}
$$

The instant power will be

$$
\begin{aligned}
P & =V I \\
& =200 \sin 1000 t \times \cos 1000 t \\
& =200 \times 2 \frac{(\sin 1000 t \cos 1000 t)}{2} \\
& =100 \sin 2000 t
\end{aligned}
$$

SECTION C :(CHEMISTRY)

1.(A)

 digested tyenzymes in Humans.
3.(D) chafges only with temperature, mode of representing the change and stowhiomely of change.
4.(B) For as pontaneous process $\Delta \mathrm{G}=-\mathrm{ve}$.

Also, $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
Thus, given conditions in (b), reveals $\Delta \mathrm{G}=+\mathrm{ve}$,
5.(D) Tertiary Amines (3 3°) do not react with $\mathrm{NaNO}_{2} / \mathrm{HCl}$.
6. (C) This polymer would be expected to have a structural role. The presence of the β glycosidic linkage makes it us eful as food only to termites or to ruminants; these animals harbor bacteria capable of attacking the β-linkage in their digesive tracts.
7.(D) The inert gases have the highest ionization energy so $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}$, \& peaks of ionization energy curve.
8.(C) $\quad \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}} \propto \frac{1}{\mathrm{~K}_{\mathrm{a}}} \propto \frac{1}{\text { Acidic nature }} \propto \frac{1}{\dashv \text { effect }}$
(For highest $\mathrm{pK}_{\mathrm{a}},-\mathrm{l}$ effect should be minimum vir.t -COOH group).
9.(D) Since $B M=4.5 \Rightarrow \sqrt{n(n+2)}=4.5 \Rightarrow n=4$ unpaired, elecfion

So, Co must be in +3 oxidation state and ligmat Lsould be a weak ligand

11.(C) th the borax bead test of CO^{2+} the blue colour of bead is due to the formation of $\mathrm{Co}\left(\mathrm{B} \mathrm{BO}_{2}\right)_{2}$.
12. (B) Decreasing the level of fructose -1, 6-biphosphate would tend to stimulate glycolys is; rather than gluconeogens is or glycogen synthesis.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
13.(B) $\mathrm{KC}=\left[\mathrm{Ca}^{2+}\right][\mathrm{F}-] 2$;
if $[\mathrm{Ca} 2+]=4 \times[\mathrm{Ca} 2+]$;

To have $K C$ constant $[\mathrm{F}-]$ should be $\frac{\left[\mathrm{F}^{-}\right]}{2}$
14.(A) According to reaction

1 male $\mathrm{C}_{6} \mathrm{H}_{6}$ give $\longrightarrow 3264.4 \mathrm{~kJ}$ energy
1 mde $=[12 \times 6+1 \times 6]=78 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6}$ give $\longrightarrow 3264.4 \mathrm{~kJ}$ erergy

15.(B) Apply Boyle's law equation

$$
\begin{gathered}
P_{1} V_{1}=P_{2} V_{2} \\
\text { or } \quad P_{2}=\frac{P_{1} V_{1}}{V_{2}}=\frac{1(\text { bar }) \times 2.5(\mathrm{~L})}{500 \times 10 \%(\mathrm{~L})}=5
\end{gathered}
$$

$\%$ increase $=\frac{\text { increase } \times 10 \%}{\text { initial pressu黄 }}=\frac{5-1}{1} \times 10 \% \% 400 \%$

SECTION D: (BIOLOGY)

1.(A) Base \%excisien rephir 'recognizes and removes single damaged bases, whereas nyceatide excision repair is more general, recognizing many different kinds of Tesions that distort DNA molecule.
2.(C) Whe -subunit contains the catalytic site for the $3^{\prime} \rightarrow 5^{\prime}$ proofreading exonuclease that fornctions in the DNA pol III core to edit nucleotides misinserted by the α subunit DNA pol.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
3.(B) A highly convex curve is characteristic of the species in which the population mortality rate is low until near the end of the life span. Many species of large animals such as deer, mountain sheep and man show such curves.
4.(B) In lower eukaryotes like yeast, amount of DNA increase with increas ing complexity of organisms. However, in higher eukaryotes there is no correation between genome size and genetic complexity. This lack of correlation betwee naserionte size and genetic complexity is refers to C -value paradox.
5.(B) Linked genes are genes located close together and/continue toremain together during inheritance thus, do not follow independent wement strength of linkage depends on the distance between 2 inked genes. Lesser the distance, more the strength of linkage.
6.(A) - The probabilities that the first three plants vive flower is $1 / 64$.

Use product rule $-1 / 4 \times 1 / 4 \times 1 / 4=1 / 64$.

- The probabilities that a plab witheither wife or pink flower is 3/4.

Use sum rule,

- The probabilitiesthat a patanitb either white or pink flower is 3/4.

Use sum rule, $\frac{1}{4} \frac{2}{2}$
7.(C) The steaty-state ass umption that underlies the Michaelis-menten relationship is the rate form of ES complex is equal to that of the breakdown of ES complex.
8.(B) mutation were a dominant (let us designate it M) then each member of the strain would be of genotype MM. Since the trait does not appear in our lethal balanced lethal stock, they must be homozygous recessive. Crosses between these two lines would be expected to produce only heterozygous genotype and

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
would be phenotypically of the mutant type. But since the mutant type did not appear in the F1, the mutation must be recessive.
9.(C) The dominant allele can express itself only in presence of either B or b i.e. Dominant epistasis. The ratio of such epistasis is $12: 3: 1$.
10.(D) The introcular pressure fluctuate with eye movement being higher when the eye is moved away from the prmary position.
11.(C) The surface of an apple turns brown when in contact with ation the eut apple is dipped in ascorbic acid, browning does not takes lace becaûse ascorbic acid inhibits activity of polyphenol oxidase.
12.(A) As we know, dibromothymoquinone which is aninhibiempot oxtochrome of complex of photosynthetic electron transport chain. It was added to the green alga chlam ydomonas. After illumination it was foung. thetia the algae plastoquinone was in reduced state because dibromothymoquirione inhibit block electron flow through cyt bf com plex.
13.(C) Histone acetylation and deacetylatiof control chromatin activity. Enzyme that acetylate histones are hislone acetyl transferases (HATs). Acetylation appears to function at severa経evels to influence gene expression. Due to loss of positive charges wien the charged Lys side chains are modified, the affinity between/hsines ad B/A have reduced. The net effect is that RNA polymerase andtranseription factors find it easier to access the promoter region.
14.(C) When yersinia bacterium contact with macrophage yop injected into the cytoplasm of the targef cell, where it catalyzes a rapid and specific dephosphorylation of sexal macrophage proteins that are required for nom al phagocytos is.
15.(A) Cell possess protooncogenes because they protect cells from infection by cancercausing viruses.

